Sains
Malaysiana 52(8)(2023): 2419-2430
http://doi.org/10.17576/jsm-2023-5208-18
Modelling Wind
Speed Data in Pulau Langkawi With Functional Relationship
(Memodelkan
Data Kelajuan Angin di Pulau Langkawi dengan Perhubungan Fungsian)
NUR AIN AL-HAMEEFATUL JAMALIYATUL1,
BASRI BADYALINA1, NURKHAIRANY AMYRA MOKHTAR1,*, ADZHAR
RAMBLI2, YONG ZULINA
ZUBAIRI 3 &
ADILAH ABDUL GHAPOR4
1Mathematical Sciences Studies, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA (UiTM) Johor Branch, Segamat Campus, 85000 Segamat, Johor, Malaysia
2School of Mathematical Sciences, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
3Institute of Advanced Studies, Universiti Malaya,
50603 Kuala Lumpur, Malaysia
4Department of Decision Science, Faculty of Business and Economics, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
Received: 16 December
2022/Accepted: 1 August 2023
Abstract
Wind speed
influenced weather predictions, aerospace operations, and maritime operations,
construction projects. This research aims to examine the relationship between
Pulau Langkawi wind speed data during the southwest monsoons in 2019 and 2020.
To model wind speed data that follows a normal distribution. An error-in-variables
model (EIVM) is utilised, which is a linear
functional relationship model (LFRM). The QQ-plots will be utilised to
investigate the adequacy of the model’s fit. The maximum likelihood estimation
(MLE) approach is employed to estimate the parameters of the model, while the
covariance is calculated using the Fisher Information matrix. As a
result, it is found that the estimated
values demonstrate consistency and reduced dispersion. Thus, the
findings could lead to a better knowledge of wind energy prediction.
Keywords: Linear
functional relationship model; maximum likelihood estimation; wind speed
Abstrak
Kelajuan
angin mempengaruhi ramalan cuaca, operasi aeroangkasa, operasi maritim dan
projek pembinaan. Tujuan penyelidikan ini adalah untuk mengkaji hubungan antara
data kelajuan angin Pulau Langkawi di Malaysia selama musim barat daya pada
tahun 2019 dan 2020. Untuk memodelkan data kelajuan angin yang tertabur secara
normal, model ralat dalam pemboleh ubah telah digunakan iaitu model hubungan
kefungsian linear. Plot QQ digunakan untuk mengkaji kebolehupayaan penyuaian
model terhadap data. Pendekatan anggaran maksimum digunakan untuk menganggar
parameter model dan matriks Maklumat Fisher digunakan untuk menghitung
kovarians. Keputusan menunjukkan bahawa nilai anggaran adalah konsisten dan
kurang terserak. Hasil kajian ini boleh meningkatkan pengetahuan berkenaan
ramalan tenaga angin.
Kata
kunci: Anggaran kebolehjadian maksimum; kelajuan angin; model hubungan fungsi
linear
REFERENCES
Amirinia, G., Kamranzad,
B. & Mafi, S. 2017. Wind and wave energy potential in southern Caspian Sea
using uncertainty analysis. Energy 120: 332-345.
https://doi.org/10.1016/j.energy.2016.11.088
Arif, A.M.,
Zubairi, Y.Z. & Hussin, A.G. 2022. Outlier detection in balanced replicated
linear functional relationship model. Sains Malaysiana 51(2): 599-607.
https://doi.org/10.17576/jsm-2022-5102-23
Arif, A.M.,
Zubairi, Y.Z. & Hussin, A.G. 2021. Maximum likelihood estimation of replicated
linear functional relationship model. Title of Journal 10(1): 301-308.
Arif, A.M.,
Zubairi, Y.Z. & Hussin, A.G. 2020. Parameter estimation in replicated
linear functional relationship model in the presence of outliers. Malaysian
Journal of Fundamental and Applied Sciences 16(2): 158-160.
https://doi.org/10.11113/mjfas.v16n2.1633
Arif, A.M.,
Zubairi, Y.G. & Hussin, A.G. 2019. On robust estimation for slope in linear
functional relationship model. Sains Malaysiana 48(1): 237-242.
https://doi.org/10.17576/jsm-2019-4801-27
Buonaccorsi,
J.P. 1996. A modified estimating equation approach to correcting for
measurement error in regression. Biometrika 83(2): 433-440.
https://doi.org/10.1093/biomet/83.2.433
Chen, Z.,
Wang, X. & Wang, H. 2018. Preliminary research on total nitrogen content
prediction of sandalwood using the error-in-variable models based on digital
image processing. PLoS ONE 13(8): 1-22.
https://doi.org/10.1371/journal.pone.0202649
Doganaksoy, N.
& van Meer, H. 2015. An application of the linear errors-in-variables
assessment an application of the linear errors-in- variables model in
semiconductor device performance assessment. Quality Engineering 27(4):
500-511. https://doi.org/10.1080/08982112.2015.1068330
Dookie, I.,
Rocke, S., Singh, A. & Ramlal, C. 2018. Evaluating wind speed probability
distribution models with a novel goodness of fit metric: A Trinidad and Tobago
case study. International Journal of Energy and Environmental Engineering 9(3): 323-339. https://doi.org/10.1007/s40095-018-0271-y
Fuller, W.
1987. Measurement Error Models. New York: John Wiley.
Ghapor, A.A.,
Zubairi, Y.Z., Mamun, A.S.M.A. & Imon, A.H.M.R. 2015a. A robust method to
estimate the slope parameter in linear functional relationship model. Recent
Advances in Renewable Energy Sources. pp. 42-49.
Ghapor, A.A.,
Zubairi, Y.Z., Mamun, A.S.M.A. & Imon, A.H.M.R. 2015b. A robust
nonparametric slope estimation in linear functional relationship model. Pakistan
Journal of Statistics 48(1): 339-350.
https://doi.org/10.17576/jsm-2019-4801-27
Ghapor, A.A.,
Zubairi, Y.Z., Mamun, A.S.M.A. & Imon, A.H.M.R. 2014. On detecting outlier
in simple linear functional relationship model using COVRATIO statistic. Pakistan
Journal of Statistics 30(1): 129-142.
Hanoon, M.S.,
Ahmed, A.N., Kumar, P., Razzaq, A., Zaini, N., Huang, Y.F., Sherif, M.,
Sefelnasr, A., Chau, K.W. & El-Shafie, A. 2022. Wind speed prediction over
Malaysia using various machine learning models: Potential renewable energy source. Engineering Applications of Computational Fluid Mechanics 16(1):
1673-1689. https://doi.org/10.1080/19942060.2022.2103588
Hassan, S.F.,
Hussin, A.G. & Zubairi, Y.Z. 2010. Estimation of functional relationship
model for circular variables and its application in measurement problems. Chiang
Mai Journal of Science 37(2): 195-205.
Hawkins, D.I.
& Kanji, G.K. 1995. 100 statistical tests. Journal of Marketing Research 32(1): 112. https://doi.org/10.2307/3152117
Kwon, S.D.
2010. Uncertainty analysis of wind energy potential assessment. Applied
Energy 87(3): 856-865. https://doi.org/10.1016/j.apenergy.2009.08.038
Lindley, D.V.
1947. Regression lines and the linear functional relationship. Supplement to
the Journal of the Royal Statistical Society 9(2): 218-244.
Lo Brano, V.,
Orioli, A., Ciulla, G. & Culotta, S. 2011. Quality of wind speed fitting
distributions for the urban area of Palermo, Italy. Renewable Energy 36(3): 1026-1039. https://doi.org/10.1016/j.renene.2010.09.009
Malaysian
Meteorological Department. 2022. Northeast Monsoon Report Kuala Lumpur Monsoon
Activity May 2022. MET Malaysia. pp. 1-2. https://www.met.gov.my/home
Malaysian
Meteorology Department. 2019. Annual Report of Malaysian Meteorological
Department 2019. Malaysian Meteorological Deparment. www.met.gov.my
Massey, F.J.
1951. The Kolmogorov-Smirnov test for goodness of fit. Journal of the
American Statistical Association 46(253): 68.
https://doi.org/10.2307/2280095
Mokhtar, N.A.,
Badyalina, B. & Zubairi, Y.Z. 2022. Functional model of wind direction data
in Kuching, Sarawak, Malaysia. Applied Mathematical Sciences 16(7):
349-357.
Mokhtar, N.A.,
Badyalina, B., Chang, K.L., Ya’acob, F.F., Ghazali, A.F. & Shamala, P.
2021a. Error-in-variables model of Malacca wind direction data with the von Mises
distribution in southwest monsoon. Applied Mathematical Sciences 15(9):
471-479. https://doi.org/10.12988/ams.2021.914521
Mokhtar, N.A.,
Zubairi, Y.Z., Hussin, A.G., Badyalina, B., Ghazali, A.F., Ya’Acob, F.F.,
Shamala, P. & Kerk, L.C. 2021b. Modelling wind direction data of Langkawi
Island during Southwest monsoon in 2019 to 2020 using bivariate linear
functional relationship model with von Mises distribution. Journal of
Physics: Conference Series 1988(1): 012097.
https://doi.org/10.1088/1742-6596/1988/1/012097
Nelder, J.
1977. Theory and application of the linear model. Journal of the Royal
Statistical Society. Series A (General) 140(3): 384-385.
Rosenhead, J.
1963. The advanced theory of statistics: Volume 2: Inference and relationship. J
Oper. Res. Soc. 14: 97-98. https://doi.org/10.2307/3006935
Zaharim, A.,
Najid, S.K., Razali, A.M. & Sopian, K. 2009. Analysing Malaysian wind speed
data using statistical distribution. Proceedings of the 4th IASME / WSEAS
International Conference on Energy & Environment (EE’09). pp. 363-370.
http://www.wseas.us/e-library/conferences/2009/cambridge/EE/EE55.pdf
Zakaria, M.
2022. The limitation of widely used data normality tests in clinical research. Auditory
and Vestibular Research 31(1): 1-3. https://doi.org/10.18502/avr.v31i1.8127
*Corresponding
author; email: nurkhairany@uitm.edu.my
|